Specially Structured Linear Programmes I: Transportation and Transhipment Problems

Contents

- Statement of the Transportation Problem
- 2. Solution to the Problem
 - a) Simplex Method
 - b) Transportation Method
- 3. Transportation Method
 - a) Initial Feasible Solution
 - North-West Corner Rule
 - Least Cost Method
 - Vogel's Approximation Method
 - b) Testing the Optimality
 - Stepping Stone Method
 - MODI Method
 - c) Obtaining an Improved Solution

Contents

(...continued)

- Special Topics
 - Unbalanced Problems
 - Prohibited Routes
 - Unique vs. Multiple Optimal Solutions
 - Degeneracy
 - Maximization Problems
- Dual of the Transportation Problem
- 6. Sensitivity Analysis
- 7. Transshipment Problem

A Typical Transportation Problem

Inputs:

- Sources with availability
- Destinations with requirements
- Unit cost of transportation from various sources to destinations

Objective:

To determine schedule of transportation to minimise total transportation cost

Transportation Problem

Simplex Tableau: Optimal Solution

From ↓ To →			Cupply			
		Р	Q	R	S	Supply
O	A	12	10	12	13	500
Source	В	7	11	8	14	300
	С	6	16	11	7	200
Demand		180	150	350	320	1,000

Transportation Problem

- Number of sources = 3
- Number of destinations = 4
- There are 12 routes available, represented by 12 cells
- Aggregate demand = Aggregate supply = 1000 units
- This is a balanced transportation problem
- For a problem, if Aggregate demand ≠ Aggregate supply, the problem is called unbalanced transportation problem

LP Formulation of Transportation Problem

Min Z = 12
$$x_{11}$$
 + 10 x_{12} + 12 x_{13} + 13 x_{14} + 7 x_{21} + 11 x_{22} + 8 x_{23} + 14 x_{24} + 6 x_{31} + 16 x_{32} + 11 x_{33} + 7 x_{34}
Subject to
$$x_{11} + x_{12} + x_{13} + x_{14} = 500$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 300$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 200$$

$$x_{11} + x_{21} + x_{31} = 180$$

$$x_{12} + x_{22} + x_{32} = 150$$

$$x_{13} + x_{23} + x_{33} = 350$$

$$x_{14} + x_{24} + x_{34} = 320$$

$$x_{ii} \ge 0 \ i = 1, 2, 3 \ \text{and} \ j = 1, 2, 3, 4$$

There are 12 decision variables and 7 constraints. One of the constraints is redundant

Transportation Method

- Step 1
 - Balance the problem if AD and AS are unequal; place an M in the cost cell if some route is prohibited; and convert into equivalent min problem if it is a max problem
- Step 2
 - Obtain initial solution
- Methods:
 - North-West Corner Rule: considers only demand and availability
 - Least Cost Method: considers unit cost, demand and availability
 - Vogel's Approximation Method: considers cost differences, demand and availability

Initial Solution: NWC Method

TC=Rs. 10,220

From ↓ To →			Cumphy			
		Р	Q	R	S	Supply
Ф	A	180 12	150 10	170 12	13	500
Source	В	7	11	180 8	120 14	300
	С	6	16	11	200 7	200
Demand		180	150	350	320	1,000

Allocation Sequence

- 1. Allocate 180 units on route AP
- 2. Move to cell AQ and allocate 150 units
- 3. Move to cell AR and allocate 170 units
- 4. Move to cell BR and allocate 180 units
- 5. Move to cell BS and allocate 120 units
- 6. Finally, allocate 200 units to cell CS

Initial Solution: Least Cost Method

TC=Rs. 9,620

From ↓ To →			Cumple			
		Р	Q	R	S	Supply
Ø	A	12	150 10	50 12	300 13	500
Source	В	7	11	300 8	14	300
S	С	180 6	16	11	20 7	200
Demand		180	150	350	320	1,000

<u>Allocation Sequence</u>

- Allocate 180 units on route AP
- 2. Select least cost cell CP, allocate 180 units
- 3. Delete column P, adjust supply at C to 20
- Select cell CS (least cost among the undeleted cells) and allocate 20 units. Delete the row C and adjust demand at S as 300
- 5. Select cell BR, assign 300 units to it. Delete the row B and adjust demand at R to 50
- Finally, Allocate 150 units to AQ, 50 to AR and 300 to AS

Initial Solution: VAM or Penalty Method

TC=Rs. 9,440

From ↓ To →			Cumphy			
		Р	Q	R	S	Supply
Ø	A	12	150 10	230 12	120 13	500
Source	В	180 7	11	120 8	14	300
	C	6	16	11	200 7	200
Dem	and	180	150	350	320	1,000

- VAM involves obtaining and using cost differences
- For every row and every column, obtain the difference between two least cost values
- Select largest of the cost differences and choose the least cost cell in that row/column

Initial Solution: VAM or Penalty Method (...continued)

- Allocate the quantity equal to lower of the supply and demand values
- Delete the row or column that is satisfied
- Repeat the steps until all supply/demand requirements are met with
- Allocations are:

Step	Cost Diff.	Cell	Qty.	Adjustment
1	6	CS	200	Delete row C Revise col S 120
2	5	BP	180	Delete col P Revise row B 120
3	4	BR	120	Delete row B Revise col R 230
4	Allocate 15	50 units to A	AQ, 230 to	AR and 120 to AS

Transportation Method (...continued)

Step 3

Test of optimality: MODI Method

- First of all, check if the number of occupied cells = m + n − 1, where
 - m = number of columns
 - n = number of rows
- If yes, proceed to assign u_i values to the rows and v_j values to the columns, and calculate Δ_{ii} values for unoccupied cells
- Assign arbitrarily a value to u or v. You can assign <u>any</u> one u_i or v_j value. Let $u_1 = 0$
- Since $u_1 = 0$, select an occupied cell in row 1, find v_j value such that $u_i + v_j = c_{ij}$. With $u_1 = 0$, for AQ, $v_2 = 10$; for AR, $v_3 = 12$ and for AS, $v_4 = 13$

MODI Method (...continued)

- Using $v_3 = 12$ choose BD and $u_2 = -4$, since 12 4 = 8 (cost)
- With $u_2 = -4$, choose BP, assign $v_1 = 11$
- Finally, with $v_4 = 13$, and the occupied cell CS, assign $u_3 = -6$, as 13 6 = 7
- Having assigned u_i and v_j values, consider all unoccupied cells one by one, add up corresponding row and column (u_i and v_j) values and subtract there from the cost element, c_{ij} . Now, $\Delta_{ij} = u_i + v_i c_{ji}$
- What do Δ_{ij} values indicate?
 - \bigcirc If all Δ_{ij} values are ≤ 0 , it is optimal solution

 - If some Δ_{ij} value/s = 0 while others are negative, there are multiple optimal solutions

Testing Optimality: MODI Method

	Р	Q	R	S	SS	u _i
		150	230	120		
Α	12	10	12	13	500	0
	180		120			
В	7	11	8	14	300	-4
				120		
C	6	16	11	7	200	-6
DD	180	150	350	320	1,000	
\mathbf{v}_{j}	11	10	12	13		

$$\Delta_{11} = -1; \Delta_{22} = -5; \Delta_{24} = -5; \Delta_{31} = -1; \Delta_{32} = -12; \text{ and } \Delta_{33} = -5$$

Since all values are negative, this solution is optimal and unique

Transportation Method (...continued)

Step 4

If some $\Delta_{ij} > 0$, the solution is not optimal. To improve a non-optimal solution:

- a) Begin with cell having largest Δ_{ij} , draw a closed loop (or path):
 - Move alternately between rows and columns
 - Stop only at occupied cells
 - Start with a + sign in the cell of origin, place
 and + signs alternately on cells on the path
- b) Consider cells with '-' sign, choose the least quantity in them; add it to each cell with '+' sign and subtract it from each cell with '-' sign
- c) Obtain revised solution and go back to step 3

Closed Loop

A closed loop:

- Ends in the same cell where it begins
- Drawn through only occupied cells except the starting cell
- May be drawn clock-wise or anti clock-wise
- Always involves an even number of cells – involving equal number of cells with '-' and '+' signs
- Involves only horizontal and vertical movements
- Does never involve diagonal movement
- Can take any shape

Drawing of a Loop

Initial Solution - LCM

	Р	Q	R	S	SS	u _i
A	12 0	150 10	12 +	300 13	500	0
В	7	11 -5	300	14 -5	300	-4
С	180	16	11 - 5	7	200	-6
DD	180	150	350	320	1,00 0	
\mathbf{v}_{j}	12	10	12	13		

- \bigcirc Loop: BP BR AR AS CS CP BP
- Shall involve transferring 180 units

Drawing of a Loop (...continued)

- The loop can take any shape
- The loop can also cross over itself

Degeneracy

- Present when number of occupied cells is smaller than m + n 1
- Prevents testing optimality of the solution
- Is removed by placing an infinitesimally small value ε in each of the required number of independent cells (An independent cell is one beginning from which a closed loop cannot be drawn)

Degenerate Solution

	1	2	3	4	5	SS
A	6	4	9	10	0	40
В	20	6	11	3	0	40
С	7	1	50 0	14	0	50
D	60 7	30 1	12	6	0	90
DD	90	30	50	30	20	220

Dual of a Transportation Problem

- A transportation problem can be expressed as an LPP:
 - Decision variables: quantities shipped on various routes
 - Constraints: demand and availability values
 - Objective function co-efficients: cost elements
- As such, its dual can be written
- The u_i and v_j values in the optimal solution indicate optimal values of the dual variables

Dual of the Transportation Problem

Maximise
$$Z = 500u_1 + 300u_2 + 200u_3 + 180v_1 + 150v_2 + 350v_3 + 320v_4$$

Subject to

$$u_1 + v_1 \le 12$$
 $u_2 + v_1 \le 8$
 $u_1 + v_2 \le 10$ $u_2 + v_2 \le 14$
 $u_1 + v_3 \le 12$ $u_3 + v_3 \le 6$
 $u_1 + v_1 \le 13$ $u_3 + v_1 \le 16$
 $u_2 + v_2 \le 7$ $u_3 + v_2 \le 11$
 $u_2 + v_3 \le 11$ $u_3 + v_3 \le 7$

 u_1 , u_2 , u_3 , v_1 , v_2 , v_3 , v_4 : unrestricted in sign

Sensitivity Analysis

Deals with:

- Changes in cost element of a nonbasic variable (an unoccupied cell)
- Changes in cost element of a basic variable (an occupied cell)
- Changes in a particular source supply and a particular destination demand by a given amount, k
- Effects of setting upper/lower limits on the values of x_{ii} variables

Production Planning Problem as TP

Key Data about an item:

- Can be produced in regular time
 (R) or overtime (O)
- Unit cost of production: R: Rs 6 and O: Rs 10
- Production capacity: R: 60 units and O: 20 units
- Carrying cost: Rs 3/unit/month
- Demand in Months 1, 2, 3 and 4: 50, 70, 85, and 75 units respectively

(continued...)

Production Planning Problem as TP

Origin		Supply				
Origin	1	2	3	4	D	Supply
R	6	9	12	15	0	60
0	10	13	16	19	0	20
R	M	6	9	12	0	60
0	M	10	13	16	0	20
R	M	M	6	9	0	60
0	M	M	10	13	0	20
R	M	M	M	6	0	60
0	M	M	M	10	0	20
Demand	50	70	85	75	40	320

Transhipment Problem

- Allows for shipment from one source to another and from one destination to another
- An m-origin n-destination transportation problem becomes a m+n origin and m+n destination transhipment problem
- With minor modifications, problem is solved using transportation method
- Transhipment allows lowering total transportation cost

- A transportation problem is balanced when
 - Total availability (TA) and Total Demand (TD) are equal, and number of sources is equal to number of destinations.
 - 2. TA and TD are equal, irrespective of the number of sources and destinations.
 - 3. Number of sources matches with number of destinations.
 - 4. None of the routes is prohibited.

- A solution to a transportation problem is degenerate when:
 - 1. the number of unoccupied cells is less than r + c 1 (r: rows, c: columns).
 - 2. The number of unoccupied cells is equal to r + c 1.
 - 3. The number of occupied cells is at least r + c 1.
 - 4. The number of occupied cells is less than r + c 1.

Mark the wrong statement:

- An unbalanced transportation problem can be converted into a balanced transportation problem through the addition of an appropriate slack variable.
- 2. In North-West Corner Rule, first allocation is always made by beginning in the upper-left hand corner of the tableau.
- 3. The North-West Corner Rule provides a systematic but inefficient method of finding initial solution to a transportation problem.
- 4. It is necessary to make number of sources and destinations equal before applying N-W Corner Rule.

The cost elements of a row in a problem are: [32 18 24 18]. In applying VAM, what cost difference will be considered for this row?

- 1. 6
- 2. 0
- 3. 8
- 4. 14

Mark the wrong statement:

- The Least Cost Method always gives the least cost solution to a transportation problem.
- 2. In the Penalty Method, a cost difference indicates the penalty of not using the least-cost route.
- 3. In case there is a tie in the maximum penalty, either of them can be selected for making allocation.
- 4. In comparison with the North-West Corner Rule, both, the Least-Cost Method and Vogel's Approximation Method, are better because they provide "near optimal" initial solution.

- To remove degeneracy, an ε is placed in an unoccupied cell which
 - 1. has the least cost value.
 - 2. has the largest cost value.
 - 3. is an independent cell, beginning with which a closed path cannot be drawn.
 - 4. is an independent cell, beginning with which a closed path can be drawn.

Which of the following conditions is not required to be satisfied by ε, used to remove degeneracy:

1.
$$k \times \varepsilon = 0$$

2.
$$k - \varepsilon = k$$

3.
$$\varepsilon - \varepsilon = 0$$

4.
$$k \div \varepsilon = k$$

Mark the correct statement:

- For drawing a closed path, movement has always to be clockwise, never anti clock-wise.
- 2. If all u_i and v_j values are known, one and only one closed path can be drawn starting with a given unoccupied cell.
- 3. Any of the r + c 1 number of occupied cells would allow determining whether a given solution is optimal or not.
- 4. Degeneracy can arise only in initial solution to a problem.

- Mark the wrong statement:
 - The number of occupied cells involved in a closed path is always even.
 - A closed path need not be a square/rectangular and can have any configuration.
 - 3. The maximum quantity, which can be reallocated in a closed path, is equal to the minimum quantity in the cells bearing negative sign.
 - 4. The $\Delta_{ij} = u_i + v_j c_{ij}$ value of an unoccupied cell indicates the net change in cost of reallocating one unit through route involved.

- Which of the following is not true for a transhipment problem?
 - 1. A transhipment problem allows for shipment of goods from one source to another as also from one destination point to another.
 - 2. An m-origin n-destination transportation problem, when converted into a transhipment problem, would become an $m \times n$ -origin and an equal number of destinations problem.
 - 3. There is no real distinction between sources and destinations in a transhipment problem.
 - 4. A transhipment problem is likely to involve a lower cost than a transportation problem, in a given situation.