Extensions of Linear Programming: Integer Programming and Goal Programming

Contents

- 1. Integer Programming
 - a) Pure and Mixed Problems
 - b) Zero-One Model
- Solution to Integer Programming Problems
 - a) Cutting Plane Algorithm
 - b) Branch and Bound Method
 - Solution to Assignment Problems
 - Solution to Traveling SalesmanProblems
- 3. Goal Programming
 - a) With Single Goal
 - b) With Multiple Goals
- 4. Non-preemptive Goal Programming
- Modified Simplex Method for Goal Programming

Integer Programming

- IPPs: special type of LPPs where some or all variables are nonnegative integers
- Pure IPPs: where all variables are required to be integers
- Mixed IPPs: where some variables are required to be integers
- Zero-one Model: an IPP where decision variables can take either of the two values: 0 or 1

Integer Programming (...continued)

Some examples of 0-1 IPP Model

- Assignment problem
- Knapsack problem
- Capital budgeting/investment problem
- Fixed charge problem
- Facility location problem

Assignment Problem as a 0 -1 IPP

Min Z =
$$45x_{11} + 40x_{12} + 51x_{13} + 67x_{14} + 57x_{21} + 42x_{22} + 63x_{23} + 55x_{24} + 49x_{31} + 52x_{32} + 48x_{33} + 64x_{34} + 41x_{41} + 45x_{42} + 60x_{43} + 55x_{44}$$

Subject to

$$X_{11} + X_{12} + X_{13} + X_{14} = 1$$
 $X_{21} + X_{22} + X_{23} + X_{24} = 1$
 $X_{31} + X_{32} + X_{33} + X_{34} = 1$
 $X_{41} + X_{42} + X_{43} + X_{44} = 1$
 $X_{11} + X_{21} + X_{31} + X_{41} = 1$
 $X_{12} + X_{22} + X_{32} + X_{42} = 1$
 $X_{13} + X_{23} + X_{33} + X_{43} = 1$
 $X_{14} + X_{24} + X_{34} + X_{44} = 1$

 $x_{ij} = 1$ if assignment is made $x_{ii} = 0$ if assignment is not made

Integer Programming

Example 7.4 Data

Max Z =
$$20,000x_1 + 28,000x_2 + 18,500x_3 + 27,500x_4 + 31,000x_5$$

St $12,000x_1 + 14,000x_2 + 7,000x_3 + 13,000x_4 + 16,000x_5 \le 48,000$
 $x_1 + x_2 + x_3 + x_4 + x_5 \le 3$
 $-x_2 + x_3 \le 0$
 $x_4 + x_5 \le 1$
 $x_1, x_2, x_3, x_4, x_5 = 0$

if investment is not made, And=1 if investment is made

Solution to IPPs

Cutting Plane Algorithm

- Drop the integer requirement and solve as LP relaxation
- If optimal solution has all-integer values, the problem is solved while if not, introduce a cut, called Gomory cut
- A cut is introduced using a constraint in the optimal solution that has a fractional RHS (b_i) value
- Cuts are introduced until allinteger solution is obtained

Properties of Gomory Cut

- The current optimal solution to LP relaxation does not satisfy the cut

 Gomory's cut has the effect of removing optimal solution to the LPP
- Any feasible point for the IPP satisfies the cut as the cut does not remove any feasible solution of the original IPP

Introducing Gomory's Cut

- To introduce the cut, rewrite constraint by separating each of the co-efficients into two parts: an integer and a fraction
- The fraction is required to be <u>non-negative</u>
- In case of no fractional part, use 0/1 as the dummy fraction
- Put all integer terms separately from the fractional ones and then drop the integer terms on the LHS and change the constraint to ≥ form

Introducing Gomory's Cut

Example 1: Consider the following linear equality constraint:

$$4x_1 + 1 \frac{1}{4}x_2 + \frac{2}{3}x_3 = 5 \frac{2}{3}$$

where x_1 , x_2 and x_3 are non-negative integers

Rewrite it as follows:

$$(4 + 0/1)x_1 + (1 + 1/4)x_2 + (0 + 2/3)x_3 = 5 + 2/3$$

$$\frac{OR}{0/1x_1+1/4x_2+2/3x_3+(4x_1+x_2+0x_3-5)} = \frac{OR}{2/3}$$

Ox₁+1/4x₂+2/3x₃ \geq 2/3

Introducing Gomory's Cut

Example 2:

 $4x_1 - 1 \frac{1}{4}x_2 + \frac{2}{3}x_3 = 5 \frac{2}{3}$ where x_1 , x_2 and x_3 are non-negative integers

To develop the cut, write

$$(4 + 0/1)x_1 + (-2 + 3/4)x_2 + (0 + 2/3)x_3 = 5 + 2/3$$

Remember the fraction has to be non-negative

$$\frac{OR}{0/1x_1+3/4x_2+2/3x_3+(4x_1-2x_2+0x_3-5)} = 2/3$$

Thus, $0x_1+3/4x_2+2/3x_3 \ge 2/3$

Introducing Gomory Constraints : Rules

Change the co-efficients of the constraint including RHS as:

Rule	Original Co-efficient	Gomory Cut
1	Integer (Positive or Negative)	Zero
2	Positive Fraction, e.g. 3/5	Unchanged, 3/5
3	Negative fraction, e.g3/5	Positive complement, 2/5

○ Change = sign to ≥

Solution to IPPs

Branch and Bound Method

- Drop the integer requirement and solve as LP relaxation
- Not a particular algorithm, but rather a generalised method
- Used generally in combinatorial problems
- Involves dividing solutions into two parts – one that most probably contains optimal solution and second that does not
- Examine further the first part to get optimal solution

Goal Programming

- Deals with multiple-objective situations
- Multiple goals are usually conflicting in nature
- Uses the concept of penalties in the format of linear programming
- A value of each goal is specified and deviational variables are used

Goal Programming

Non-preemptive Goal Programming

- Assumes the decision-maker has a linear utility function with respect to the objectives
- Differential weights are used to various goals in line with their relative significance

Preemptive Goal Programming

- Uses prioritised goals
- When optimal solution with respect to the higher priority goal is obtained only then the next priority level is considered

- Mark the correct statement about integer programming problems (IPPs):
 - Pure IPPs are those problems in which all the variables are nonnegative.
 - 2. The 0-1 IPPs are those in which all variables are either 0 or all are equal to 1.
 - 3. Mixed IPPs are that where decision variables can take integer values only but the slack/surplus variables can take fractional values as well.
 - In real life, no variable can assume fractional values. Hence we should always use IPPs.

Consider the following problem:

Max.
$$z = 28x_1 + 32x_2$$
, subject to $5x1 + 3x_2 \le 23$, $4x_1 + 7x_2 \le 33$, and $x_1 \ge 0$, $x_2 \ge 0$. This problem is:

- 1. A pure IPP.
- 2. A 0-1 IPP.
- 3. A mixed IPP.
- 4. Not an IPP.

- Mark the wrong statement:
 - 1. An IPP where the values of the decision variables are limited to two logical categories, like yes or no, are handled as 0-1 problems.
 - 2. An assignment problem can be expressed as a 0-1 IPP.
 - 3. An IPP that has no constraint is known as knapsack problem.
 - 4. For a problem involving three variables x_1 , x_2 , $x_3 \ge 0$, and x_1 , x_3 integer, is a mixed IPP.

- For a capital budgeting problem with five investment projects, state which of the following is incorrect (in each case x₁, x₂, x₃, x₄, x₅ = 0 or 1):
 - 1. No more then three investments be made: $x_{1} + x_{2} + x_{3} + x_{4} + x_{5} \le 3$
 - 2. Invest in proposal III if invested in proposal V: $x_2 \le x_3$
 - 3. Do not invest in 5, invest in three: $x_3 + x_5 \le 1$
 - 4. Total budget is Rs. 72,000 and cash outflow (in '000 Rs.) is 28, 32, 18, 38 and 19: $x_{1+} x_{2} + x_{3} + x_{4} + x_{5} \le 3$

Mark the correct statement:

- 1. A facility location problem can be formulated and solved as a 0-1 IPP.
- 2. Problems involving piece-wise linear functions can be modelled as mixed linear programming problems.
- Solution to an IPP can be obtained by first solving the problem as an LPP then rounding off the fractional values.
- 4. If the optimal solution to an LPP has all integer values, it may or may not be an optimal integer solution.

- 1. To solve an IPP using cutting plane algorithm, the integer requirements are dropped in the first instance to obtain LP relaxation.
- 2. A cut is formed by choosing a row in the optimal tableau that corresponds to a non-integer variable.
- 3. A constraint picked from the optimal tableau is: $0x_1 + x_2 + \frac{1}{2}S_1 \frac{1}{3}S_2 = \frac{7}{2}$. With S_3 being a slack variable introduced, the cut would be: $-\frac{1}{2}S_1 \frac{2}{3}S_2 + S_3 = -\frac{1}{2}$
- The optimal solution to LPP satisfies the cut that is introduced on the basis of it.

In cutting plane algorithm, each cut which is made involves the introduction of:

- 1. An = constraint.
- 2. An artificial variable.
- 3. $a \le constraint$.
- 4. $a \ge constraint$.

- Which of the following effects does the addition of a Gomory have? (i) adding a new variable to the tableau; (ii) elimination of noninteger solutions from the feasibility region; (iii) making the previous optimal solution infeasible by eliminating that part of the feasible region which contained that solution.
 - 1. (i) only
 - 2. (i) and (ii) only
 - 3. (i) and (iii) only
 - 4. all the above

- Mark the incorrect statement about Branch and Bound method.
 - 1. It is not a particular method and is used differently in different kinds of problems.
 - 2. It is generally used in combinatorial problems.
 - 3. It divides the feasible region into smaller parts by the process of branching.
 - 4. It can be used for solving any kind of programming problem.

- Mark the wrong statement:
 - 1. Goal programming deals with problems with multiple goals.
 - 2. Goal programming realizes that goals may be under-achieved, over-achieved or met exactly.
 - The inequalities or equalities representing goal constraints are flexible.
 - 4. The initial tableau of a goal programming problem should never have a variable in the basis which is an under-achievement variable.

- A travelling salesman problem can be solved using Branch and Bound method.
- 2. An assignment problem can be formulated as a 0-1 IPP and solved using Branch and Bound method.
- 3. The Branch and Bound method terminates when the upper and lower bound become identical and the solution is that single value.
- The Branch and Bound method can never reveal multiple optimal solutions to a problem, if they exist.

- If two deviational variables, d- for under-achievement and d+ for over-achievement, are introduced in a goal constraint, then which of the following would not hold:
 - 1. Each of them can be positive or zero.
 - 2. Either d- or d+ is zero.
 - 3. Both are non-zero.
 - 4. Both are equal to zero.

- A 'lower' one-sided goal sets a lower limit that we do not want to fall under.
- A two-sided goal sets a specific target missing which from either side is not desired.
- 3. In goal programming, an attempt is made to minimise deviations from targets.
- 4. In using goal programming, one has to specify clearly the relative importance of the various goals involved by assigning weights to them.

- 1. 'Non pre-emptive goal programming assumes that the decision-maker has a linear utility function with respect to the objectives.
- 2. Deviations for various goals may be given penalty weights in accordance with the relative significance of the objectives.
- 3. The penalty weights measure the marginal rate of substitution between the objectives.
- 4. A goal-programming problem cannot have multiple optimal solutions.

- 1. In pre-emptive goal programming, the goals are ranked from least important (goal 1) to most important (goal n), with objective function co-efficients P_i , such that $P_1 >>> P_2 >>> P_3 >>>> P_n$.
- 2. Existence of multiple Δ_j rows indicates a prioritised goal-programming problem.
- A lower priority is never sought to be achieved at the expense higher-priority goal.
- 4. The coefficients, P_i's are not assigned any actual values.