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Types of Integer Programming Models

An LP in which all the variables are restricted to be 
integers is called an all-integer linear program (ILP).

The LP that results from dropping the integer 
requirements is called the LP Relaxation of the ILP.

If only a subset of the variables are restricted to be 
integers, the problem is called a mixed-integer linear 
program (MILP).

Binary variables are variables whose values are 
restricted to be 0 or 1.  If all variables are restricted to 
be 0 or 1, the problem is called a 0-1 or binary integer 
linear program.  



Example:  All-Integer LP

Consider the following all-integer linear program:

Max    3x1 + 2x2

s.t. 3x1 +   x2 < 9

x1 + 3x2 < 7

-x1 +   x2 < 1

x1, x2 > 0 and integer



Example:  All-Integer LP

LP Relaxation

Solving the problem as a linear program ignoring 
the integer constraints, the optimal solution to the 
linear program gives fractional values for both x1 and 
x2.  From the graph on the next slide, we see that the 
optimal solution to the linear program is:

x1 = 2.5,   x2 = 1.5,

Max  3x1 + 2x2 = 10.5



Example:  All-Integer LP

LP Relaxation

LP Optimal  (2.5,  1.5)
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Example:  All-Integer LP

Rounding Up

If we round up the fractional solution (x1 = 2.5,   
x2 = 1.5) to the LP relaxation problem, we get x1 = 3 
and x2 = 2. From the graph on the next slide, we see 
that this point lies outside the feasible region, 
making   this solution infeasible.



Example:  All-Integer LP

Rounded Up Solution

ILP Infeasible (3, 2)

LP Optimal  (2.5,  1.5)
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Example:  All-Integer LP

Rounding Down

By rounding the optimal solution down to x1 = 2, 
x2 = 1, we see that this solution indeed is an integer 
solution within the feasible region, and substituting 
in the objective function, it gives 3x1 + 2x2 = 8.

We have found a feasible all-integer solution, but 
have we found the OPTIMAL all-integer solution?

---------------------

The answer is NO!  The optimal solution is x1 = 3 
and x2 = 0 giving 3x1 + 2x2 = 9, as evidenced in the 
next two slides. 



Example:  All-Integer LP

Complete Enumeration of Feasible ILP Solutions

There are eight feasible integer solutions to this 
problem:

x1 x2 3x1 + 2x2

1. 0       0    0
2. 1       0  3
3. 2       0  6
4. 3       0   9                optimal solution
5. 0       1  2
6. 1       1  5
7. 2       1   8
8. 1       2   7



Example:  All-Integer LP

ILP Optimal  (3, 0)

Max  3x1 + 2x2

- x1 + x2 < 1
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Example: Capital Budgeting

The Ice-Cold Refrigerator Company is considering 

investing in several projects that have varying capital 

requirements over the next four years.  Faced with 

limited capital each year, management would like to 

select the most profitable projects.  The estimated net 

present value for each project, the capital 

requirements, and the available capital over the four-

year period are shown on the next slide.



Example: Capital Budgeting

Problem Data



Example: Capital Budgeting

Decision Variables

The four 0-1 decision variables are as follows:

P = 1 if the plant expansion project is accepted; 

0 if rejected
W = 1 if the warehouse expansion project is accepted;

0 if rejected
M = 1 if the new machinery project is accepted; 

0 if rejected

R = 1 if the new product research project is accepted; 

0 if rejected



Example: Capital Budgeting

Problem Formulation

Max   90P + 40W + 10M + 37R

s.t. 15P + 10W + 10M + 15R < 40   (Yr. 1 capital avail.)

20P + 15W + 10R < 50   (Yr. 2 capital avail.

20P + 20W + 10R < 40   (Yr. 3 capital avail.)

15P + 5W + 4M + 10R < 35   (Yr. 4 capital avail.)

P, W, M, R = 0, 1



Example: Capital Budgeting

Optimal Solution

P = 1, W = 1, M = 1, R = 0.
Total estimated net present value = $140,000

The company should fund the plant expansion, the 
warehouse expansion, and the new machinery projects.

The new product research project should be put on hold 
unless additional capital funds become available.

The company will have $5,000 remaining in year 1, 
$15,000 remaining in year 2, and $11,000 remaining in 
year 4.  Additional capital funds of $10,000 in year 1 
and $10,000 in year 3 will be needed to fund the new 
product research project. 



Example: Fixed Cost

Three raw materials are used to produce 3 

products: a fuel additive, a solvent base, and a carpet 

cleaning fluid. The profit contributions are $40 per ton 

for the fuel additive, $30 per ton for the solvent base, 

and $50 per ton for the carpet cleaning fluid. 

Each ton of fuel additive is a blend of 0.4 tons of 

material 1 and 0.6 tons of material 3. Each ton of solvent 

base requires 0.5 tons of material 1, 0.2 tons of material 

2, and 0.3 tons of material 3. Each ton of carpet cleaning 

fluid is a blend of 0.6 tons of material 1, 0.1 tons of 

material 2, and 0.3 tons of material 3. 



Example: Fixed Cost

RMC has 20 tons of material 1, 5 tons of material 2, 

and 21 tons of material 3, and is interested in 

determining the optimal production quantities for the 

upcoming planning period.

There is a fixed cost for production setup of the 

products, as well as a maximum production quantity 

for each of the three products.

Product Setup Cost Maximum Production

Fuel additive $200 50 tons

Solvent base $ 50 25 tons 

Cleaning fluid $400 40 tons 



Example: Fixed Cost

Decision Variables

F = tons of fuel additive produced

S = tons of solvent base produced

C = tons of carpet cleaning fluid produced

SF = 1 if the fuel additive is produced;  0 if not

SS = 1 if the solvent base is produced;  0 if not

SC = 1 if the cleaning fluid is produced;  0 if not  



Example: Fixed Cost

Problem Formulation

Max  40F + 30S + 50C – 200SF – 50SS – 400SC

s.t.    0.4F + 0.5S + 0.6C < 20   (Mat’l. 1)

0.2S + 0.1C < 5   (Mat’l. 2)

0.6F + 0.3S + 0.3C                        < 21   (Mat’l. 3)

F           - 50SF < 0   (Max.F)

S     - 25SS < 0   (Max. S)

C          - 50SF < 0   (Max. C)

F, S, C > 0;  SF, SS, SC = 0, 1



Example: Fixed Cost

Optimal Solution

Produce 25 tons of fuel additive.

Produce 20 tons of solvent base.

Produce   0 tons of cleaning fluid.

The value of the objective function after deducting 
the setup cost is $1350. The setup cost for the fuel 
additive and the solvent base is $200 + $50 = $250. 

The optimal solution shows SC = 0, which indicates 
that the more expensive $400 setup cost for the carpet 
cleaning fluid should be avoided. 



Example: Supply Chain Design

The Martin-Beck Company operates a plant in St. 

Louis with an annual capacity of 30,000 units. Product  

is shipped to regional distribution centers located in 

Boston, Atlanta, and Houston. Because of an anticipated 

increase in demand, Martin-Beck plans to increase 

capacity by constructing a new plant in one or more of 

the following cities: Detroit, Toledo, Denver, or Kansas 

City. 



Example: Supply Chain Design

The estimated annual fixed cost and the annual 

capacity for the four proposed plants are as follows:

Proposed Plant Annual Fixed Cost Annual Capacity

Detroit $175,000 10,000

Toledo $300,000 20,000

Denver $375,000 30,000 

Kansas City $500,000 40,000



Example: Supply Chain Design

The company’s long-range planning group 

developed forecasts of the anticipated annual demand 

at the distribution centers as follows: 

Distribution Center Annual Demand

Boston 30,000

Atlanta 20,000 

Houston 20,000



Example: Supply Chain Design

The shipping cost per unit from each plant to each 

distribution center is shown below.



Decision Variables

y1 = 1 if a plant is constructed in Detroit;  0 if not

y2 = 1 if a plant is constructed in Toledo;  0 if not

y3 = 1 if a plant is constructed in Denver;  0 if not

y4 = 1 if a plant is constructed in Kansas City;  0 if not 

xij = the units shipped (in 1000s) from plant i to

distribution center j , with i = 1, 2, 3, 4, 5 and

j = 1, 2, 3

Example: Supply Chain Design



Problem Formulation

Example: Supply Chain Design



Optimal Solution

Construct plant in Kansas City (y4 = 1).

Ship 20,000 units: Kansas City to Atlanta (x42 = 20),  
Ship 20,000 units: Kansas City to Houston (x43 = 20), 
Ship 30,000 units: St. Louis to Boston (x51 = 30).

Total cost: $860,000 including fixed cost of $500,000.

Example: Distribution System Design



Example: Bank Location

The long-range planning department for the Ohio 

Trust Company is considering expanding its operation 

into a 20-county region in northeastern Ohio.   Ohio 

Trust does not have, at this time, a principal place of 

business in any of the 20 counties. 

According to the banking laws in Ohio, if a bank 

establishes a principal place of business (PPB) in any 

county, branch banks can be established in that county 

and in any adjacent county.   To establish a new PPB, 

Ohio Trust must either obtain approval for a new bank 

from the state’s superintendent of banks or purchase an 

existing bank. 



Example: Bank Location

The 20 counties in the region and adjacent counties 

are listed on the next slide.  For example, Ashtabula 

County is adjacent to Lake, Geauga, and Trumbull 

counties; Lake County is adjacent to Ashtabula, 

Cuyahoga, and Geauga counties; and so on.

As an initial step in its planning, Ohio Trust would 

like to determine the minimum number of PPBs 

necessary to do business throughout the 20-county 

region. A 0-1 integer programming model can be used 

to solve this location problem for Ohio Trust.



Example: Bank Location



Decision Variables

xi = 1 if a PBB is established in county i; 0 otherwise

Problem Formulation

Example: Bank Location



Optimal Solution

For this 20-variable, 20-constraint problem:

Establish PPBs in Ashland, Stark, Geauga counties.

(With PPBs in these three counties, Ohio Trust can place 
branch banks in all 20 counties.)  

All other decision variables have an optimal value of 
zero, indicating that a PPB should not be placed in these 
counties. 

Example: Bank Location



Example: Product Design & Market Share

Market Pulse Research has conducted a study for 

Lucas Furniture on some designs for a new commercial 

office desk.  Three attributes were found to be most 

influential in determining which desk is most desirable:  

number of file drawers, the presence or absence of 

pullout writing boards, and simulated wood or solid 

color finish.  Listed on the next slide are the part-worths 

for each level of each attribute provided by a sample of 

7 potential Lucas customers.



File Drawer Pullout Writing 
Boards

Finish

Consumer 0 1 2 Present Absent Simulated 
Wood

Solid 
Color

1 5 26 20 18 11 17 10

2 18 11 5 12 16 15 26

3 4 16 22 7 13 11 19

4 12 8 4 18 9 22 14

5 19 9 3 4 14 30 19

6 6 15 21 8 17 20 11

7 9 6 3 13 5 16 28

Example: Product Design & Market Share

Part-Worths



Example: Product Design & Market Share

Suppose the overall utility (sum of part-worths) of 

the current favorite commercial office desk is 50 for each 

customer.  What is the product design that will 

maximize the share of choices for the seven sample 

participants?  Formulate and solve this  0 – 1 integer 

programming problem.



Decision Variables

There are 7 lij decision variables, one for each level of 
attribute.

lij = 1 if Lucas chooses level i for attribute j; 

0 otherwise.

There are 7 Yk decision variables, one for each 
consumer in the sample.

Yk = 1 if consumer k chooses the Lucas brand;

0 otherwise

Example: Product Design & Market Share



Example: Product Design & Market Share

Objective Function

Maximize the number of consumers preferring the 
Lucas brand desk.

Max   Y1 + Y2 + Y3 + Y4 + Y5 + Y6 + Y7



Example: Product Design & Market Share

Constraints

There is one constraint for each consumer in the sample.

5l11 + 26l21 + 20l31 + 18l12 + 11l22 + 17l13 + 10l23 – 50Y1 > 1
18l11 + 11l21 +   5l31 + 12l12 + 16l22 + 15l13 + 26l23 – 50Y2 > 1

4l11 + 16l21 + 22l31 +   7l12 + 13l22 + 11l13 + 19l23 – 50Y3 > 1
12l11 +   8l21 +   4l31 + 18l12 +   9l22 + 22l13 + 14l23 – 50Y4 > 1
19l11 +   9l21 +   3l31 +   4l12 + 14l22 + 30l13 + 19l23 – 50Y5 > 1

6l11 + 15l21 + 21l31 +   8l12 + 17l22 + 20l13 + 11l23 – 50Y6 > 1

9l11 +   6l21 +   3l31 + 13l12 +   5l22 + 16l13 + 28l23 – 50Y7 > 1



Example: Product Design & Market Share

Constraints

There is one constraint for each attribute.

l11 + l21 + l31 =  1

l12 + l22 =  1

l13 + l23 =  1



Optimal Solution

Lucas should choose these product features:

1 file drawer                          (l21 = 1)

No pullout writing boards  (l22 = 1)

Simulated wood finish         (l13 = 1)

Three sample participants would choose the Lucas 
design:

Participant 1  (Y1 = 1)

Participant 5  (Y5 = 1)

Participant 6  (Y6 = 1)

Example: Product Design & Market Share



Modeling Flexibility Provided by 0-1 Variables

When xi and xj represent binary variables designating 
whether projects i and j have been completed, the 
following special constraints may be formulated:

• At most k out of n projects will be completed:  
xj < k
j

• Project j is conditional on project i:     

xj - xi < 0

• Project i is a corequisite for project j:  

xj - xi = 0

• Projects i and j are mutually exclusive:   

xi + xj < 1



Example:  Metropolitan Microwaves

Metropolitan Microwaves, Inc. is planning to

expand its sales operation by offering other electronic

appliances.  The company has identified seven new

product lines it can carry.  Relevant information about

each line follows on the next slide.



Example:  Metropolitan Microwaves

Initial   Floor Space   Exp. Rate 

Product Line        Invest.      (Sq.Ft.)       of Return

1.  TV/DVRs $ 6,000           125 8.1%
2.  TVs 12,000           150  9.0 
3.  Projection TVs        20,000           200    11.0 
4.  DVRs 14,000             40      10.2 
5.  DVD Players 15,000             40      10.5 
6.  Video Games                 2,000             20      14.1 
7.  Desktop Computers       32,000           100 13.2 



Example:  Metropolitan Microwaves

Metropolitan has decided that they should not 
stock projection TVs unless  they stock either 
TV/DVRs or TVs.  Also, they will not stock both 
DVRs and DVD players, and they will stock video 
games if they stock TVs.  Finally, the company wishes 
to introduce at least three new product lines.  

If the company has $45,000 to invest and 420 sq. 
ft. of floor space available, formulate an integer linear 
program for Metropolitan to maximize its overall 
expected return.



Example:  Metropolitan Microwaves

Define the Decision Variables

xj = 1 if product line j is introduced;

= 0 otherwise.

where:

Product line 1 =  TV/DVRs

Product line 2 =  TVs

Product line 3 =  Projection TVs

Product line 4 =  DVRs

Product line 5 =  DVD Players

Product line 6 =  Video Games

Product line 7 =  Desktop Computers



Example:  Metropolitan Microwaves

Define the Decision Variables

xj = 1 if product line j is introduced;

= 0 otherwise.

Define the Objective Function

Maximize total expected return:

Max   .081(6000)x1 + .09(12000)x2 + .11(20000)x3

+ .102(14000)x4 + .105(15000)x5 + .141(2000)x6

+ .132(32000)x7



Example:  Metropolitan Microwaves

Define the Constraints

1)  Money:  

6x1 + 12x2 + 20x3 + 14x4 + 15x5 + 2x6 + 32x7 < 45

2)  Space:  

125x1 +150x2 +200x3 +40x4 +40x5 +20x6 +100x7 < 420

3)  Stock projection TVs only if stock TV/DVRs or TVs:

x1 + x2 > x3 or  x1 + x2 - x3 > 0



Example:  Metropolitan Microwaves

Define the Constraints (continued)

4)  Do not stock both DVRs and DVD players:  

x4 + x5 < 1

5)  Stock video games if they stock TV's:  

x2 - x6 > 0

6)  Introduce at least 3 new lines:

x1 + x2 + x3 + x4 + x5 + x6 + x7 > 3

7)  Variables are 0 or 1: 

xj = 0 or 1 for j = 1, , , 7



Example:  Metropolitan Microwaves

Optimal Solution

Introduce:

TV/DVRs,  Projection TVs, DVD Players

Do Not Introduce:

TVs, DVRs, Video Games, Desktop Computers

Total Expected Return:

$4,261



Cautionary Note About Sensitivity Analysis

Sensitivity analysis often is more crucial for ILP 
problems than for LP problems.

A small change in a constraint coefficient can cause a 
relatively large change in the optimal solution.

Recommendation:  Resolve the ILP problem several 
times with slight variations in the coefficients before 
choosing the “best” solution for implementation.


