Linear Programming III: Duality and Sensitivity Analysis

Contents

- Concept of Duality
- 2. Writing the Dual
- 3. Dual of LPPs with Mixed Constraints and Unrestricted Variables
- Comparison of the Optimal Solutions to Primal and Dual Problems
- 5. Economic Interpretation of the Dual
- 6. Sensitivity Analysis
 - a) Graphic Approach
 - b) With Simplex Method
- 7. Sensitivity Analysis with Multiple Parameter Changes: The 100% Rule

Duality

- Every LPP has a dual, the given LPP is primal
- If primal is a max problem the dual is a min problem
- An m-variable n-constraint primal has an n-variable m-constraint dual
- The dual is obtained by transposing the three matrices involved in the primal problem

Duality

(...continued)

- Before writing dual for an LPP, make sure
 - 1. All variables are non-negative
 - Replace every unrestricted variable by difference of two non-negative variables
 - All constraints are ≤ type for a max problem/ ≥ type for a min problem
 - If a constraint is in a direction opposite to the one desired, then multiply it both sides by -1 and reverse the direction of inequality
 - Replace a constraint involving "=" sign with a pair of constraints with identical LHS and RHS values: one with ≥ sign and the other with ≥ sign

Primal-Dual Relationship

(Assuming a max primal problem)

Primal	Dual
Max	Min
No. of variables	No. of constraints
No. of constraints	No. of variables
≤ type constraint	Non-negative variable
= type constraint	Unrestricted variable
Unrestricted variable	= type constraint
Objective function value for jth variable	RHS constant for jth constraint
RHS constant for <i>i</i> th constraint	Objective function value for <i>i</i> th variable
Co-efficient (a_{ij}) for j th variable in the i th constraint	Co-efficient (a_{ij}) for i th variable in the j th constraint

Writing the Dual: Example 1

Primal

Maximize
$$Z = 22x_1 + 30x_2 + 32x_3$$

Subject to $5x_1 + 3x_2 + 8x_3 \le 70$
 $2x_1 - 8x_2 + 9x_3 \le 86$
 $x_1, x_2, x_3 \ge 0$

Here both conditions are satisfied.

Dual

Minimize G =
$$70y1 + 86y2$$
 Subject to $5y1 + 2y2 \ge 22$ $3y1 - 8y2 \ge 30$ $8y1 + 9y2 \ge 32$ $y1, y2 \ge 0$

- Here x1 , x2 , and x3 are primal variables and y1 and y2 are dual variables
- The primal has 3 variables and 2 constraints, while the dual has 2 variables and 3 constraints

Writing the Dual: Example 2

Primal

Maximize
$$Z = 3x_1 + 5x_2 + 7x_3$$

Subject to $2x_1 + 4x_2 + 3x_3 \le 40$
 $-4x_1 + 5x_2 - 3x_3 \ge 25$
 $x_1 + 2x_2 + 5x_3 = 15$
 $x_1, x_2 \ge 0, x_3$: unrestricted in sign

To write the dual, first multiply second constraint by -1; replace the third constraint by a pair of inequalities in opposite directions; and replace the unrestricted variable x3 = x4 - x5

The problem becomes:

Maximize
$$Z = 3x1 + 5x2 + 7x4 - 7x5$$

Subject to $2x1 + 4x2 + 3x4 - 3x5 \le 40$
 $4x1 - 5x2 - 3x4 + 3x5 \le -25$
 $x1 + 2x2 + 5x4 - 5x5 \le 15$
 $-x1 - 2x2 - 5x4 + 5x5 \le -15$
 $x1, x2, x4, x5 \ge 0$

Example 2 (...continued)

With dual variables y_1 , y_2 , y_3 and y_4 ,

Minimize $G = 40y_1 - 25y_2 + 15y_3 - 15y_4$ Subject to $2y_1 + 4y_2 + y_3 - y_4 \ge 3$ $4y_1 - 5y_2 + 2y_3 - 2y_4 \ge 5$ $3y_1 - 3y_2 + 5y_3 - 5y_4 \ge 7$ $-3y_1 + 3y_2 - 5y_3 + 5y_4 \ge -7$ y_1 , y_2 , y_3 and $y_4 \ge 0$

Now, let $y_3 - y_4 = y_5$ and combining the last two constraints and re-writing them instead as an equation, the **Dual** is:

Minimize G =
$$40y_1 - 25y_2 + 15y_5$$

Subject to $2y_1 + 4y_2 + y_5 \ge 3$
 $4y_1 - 5y_2 + 2y_5 \ge 5$
 $3y_1 - 3y_2 + 5y_5 = 7$

 $y_1, y_2 \ge 0$ and y_5 unrestricted in sign

For an unrestricted variable in the primal, a constraint in dual involves an equation, while for an equation in the primal, there is an unrestricted variable

Primal-Dual Relationship

- If feasible solutions exist for both primal and dual, the objective function values of their optimal solutions are equal
- The solution to the dual can be read from the Δ_{ij} values of the slack/surplus variables in the optimal solution tableau of the primal
- If primal has unbounded solution, the dual has no feasible solution

Primal and Dual Solutions

Example 3.2 Data

Primal Problem

Max
$$Z = 5x_1 + 10x_2 + 8x_3$$
 Contribution
St $3x_1 + 10x_2 + 2x_3 \le 60$ Fabrication Hrs $4x_1 + 4x_2 + 4x_3 \le 72$ Finishing Hrs $2x_1 + 4x_2 + 4x_3 \le 100$ Packaging Hrs $x_1, x_2, x_3 \ge 0$

Dual Problem

Min G =
$$60y_1 + 72y_2 + 100y_3$$

St $3y_1 + 4y_2 + 2y_3 \ge 5$
 $10y_1 + 4y_2 + 4y_3 \ge 10$
 $2y_1 + 4y_2 + 4y_3 \ge 8$
 $y_1, y_2, y_3 \ge 0$

Primal and Dual Solutions

Simplex Tableau: Optimal Solution

Basis	x ₁	X ₂	X ₃	S ₁	S ₂	S ₃	b _i
x ₂ 10	1/3	1	0	1/3	-1/6	0	8
x ₃ 8	2/3	0	1	-1/3	5/12	0	10
S ₃ 0	-8/3	0	0	1/3	-17/12	1	18
c _j	5	10	8	0	0	0	
Sol	0	8	10	0	0	18	160
$\Delta_{ m j}$	-11/3	0	0	-2/3	-5/3	0	

Solution to primal problem:

$$x_1 = 0$$
, $x_2 = 8$ and $x_3 = 10$

$$Z = 5 \times 0 + 10 \times 8 + 8 \times 10 = 160$$

Solution to dual problem:

$$y_1 = 2/3$$
, $y_2 = 5/3$ and $y_3 = 0$

$$G = 60 \times 2/3 + 72 \times 5/3 + 100 \times 0 = 160$$

Economic Interpretation of Dual

- The Δ_j values corresponding to slack/surplus variables in the optimal solution indicate marginal profitability (or shadow prices) of the resources they represent
- A resource unused fully has zero shadow price
- A unit change in the availability of a resource changes the objective function value by an amount of its shadow price

Sensitivity Analysis

RHS Ranging

- Shadow prices are valid only over certain ranges
- The range for each resource is determined by b_i and a_{ij} values in the optimal solution tableau

Changes in objective function coefficients

- Within certain limits, such changes do not induce changes in the optimal mix
- The limits are determined by Δ_j and the appropriate a_{ij} values in the optimal solution tableau

Economic Interpretation

Simplex Tableau: Optimal Solution

Basis	x ₁	X ₂	X ₃	S ₁	S ₂	S ₃	b _i
x ₂ 10	1/3	1	0	1/3	-1/6	0	8
x ₃ 8	2/3	0	1	-1/3	5/12	0	10
S ₃ 0	-8/3	0	0	1/3	-17/12	1	18
C _j	5	10	8	0	0	0	
Sol	0	8	10	0	0	18	160
$\Delta_{ m j}$	-11/3	0	0	-2/3 •	-5/3	0	

- Each hour in Fabrication is worth Rs 2/3 so that an increase of one hour would increase profit by Rs 2/3 and a decrease of one hour would result in a decrease of Rs 2/3
- Similarly, each hour in Finishing is worth Rs 5/3
- The marginal profitability of Packaging hours is 0 since there is unutilized capacity of 18 hours. Further addition to capacity will not add to profit and reducing capacity will also not affect it

RHS Ranging

Fabrication Hours

b _i	a _{ij}	b _i /a _{ij}	
8	1/3	24	Least positive
10	-1/3	-30	← Least negative
18	1/3	54	

- Range: 60-24 = 36 to 60-(-30)=90
- Shadow price of Rs. 2/3 is valid over the range 36 to 90 hours

Finishing Hours

b _i	a _{ij}	b _i /a _{ij}	
8	-1/6	-48	Least positive
10	5/12	24	← Least negative
18	-17/12	-12.71	

- Range: 72-24 to 72+12.71 OR 48 to 84.71
- Packaging Hours
 - 100-18=72
 - Therefore, range is 72 to ∞

Changes in Objective Function Co-efficients

For x ₂ (a basic variable)								
$\Delta_{ m j}$	-11/3	0	0	-2/3	-5/3	0		
a _{ij}	1/3	1	0	1/3	-1/6	0		
Ratio	-11	0	-	-2	10	-		
Least negative Least positive								

Range: 10-2 to 10+10 OR Rs. 8 to Rs. 20

For x ₃ (a basic variable)								
$\Delta_{ m j}$	-11/3	0	0	-2/3	-5/3	0		
a _{ij}	2/3	0	1	-1/3	5/12	0		
Ratio	-11/2	-	0	2	-4	-		

Least positive Least negative Range: 8-4 to 8+2 OR Rs. 4 to Rs. 10

For x₁ (a non-basic variable)

Range: -∞ to 5+11/3 OR Rs -∞ to Rs 8.67

Mark the wrong statement:

- 1. If the primal is a minimisation problem, its dual will be a maximisation problem.
- 2. Columns of the constraint coefficients in the primal problem become columns of the constraint coefficients in the dual.
- For an unrestricted primal variable, the associated dual constraint is an equation.
- 4. If a constraint in a maximisation type of primal problem is a "less-than-or-equal-to" type, the corresponding dual variable is non-negative.

- Mark the wrong statement:
 - 1. The dual of the dual is primal.
 - 2. An equation in a constraint of a primal problem implies the associated variable in the dual problem to be unrestricted.
 - 3. If a primal variable is nonnegative, the corresponding dual constraint is an equation.
 - 4. The objective function coefficients in the primal problem become right-hand sides of constraints of the dual.

Choose the wrong statement:

- 1. In order that dual to an LPP may be written, it is necessary that it has at least as many constraints as the number of variables.
- The dual represents an alternate formulation of LPP with decision variables being implicit values.
- 3. The optimal values of the dual variables can be obtained by inspecting the optimal tableau of the primal problem as well.
- Sensitivity analysis is carried out having reference to the optimal tableau alone.

- Choose the incorrect statement:
 - 1. All scarce resources have marginal profitability equal to zero.
 - 2. Shadow prices are also known as imputed values of the resources.
 - 3. A constraint $3x_1 7x_2 + 13x_3 4x_4$ ≥ -10 can be equivalently written as $-3x_1 + 7x_2 - 13x_3 + 4x_4 \leq 10$.
 - If all constraints of a minimisation problem are ≥ type, then all dual variables are non-negative.

- To write the dual, it should be ensured that
 - i. All the primal variables are nonnegative
 - ii. All the bi values are non-negative
 - iii. All the constraints are ≤ type if it is maximisation problem and ≥ type if it is a minimisation problem
 - 1. i and ii
 - 2. ii and iii
 - 3. i and iii
 - 4. i, ii and iii

Mark the wrong statement:

- If the optimal solution to an LPP exists then the objective function values for the primal and the dual shall both be equal.
- 2. The optimal values of the dual variables are obtained from Δ_j values from slack/surplus variables, in the optimal solution tableau.
- 3. An *n*-variable *m*-constraint primal problem has an *m*-variable *n*-constraint dual.
- 4. If a constraint in the primal problem has a negative b_i value, its dual cannot be written.

Mark the wrong statement:

- 1. The primal and dual have equal number of variables.
- 2. The shadow price indicates the change in the value of the objective function, per unit increase in the value of the RHS.
- 3. The shadow price of a nonbinding constraint is always equal to zero.
- 4. The information about shadow price of a constraint is important since it may be possible to purchase or otherwise acquire additional units of the concerned resource.

- Choose the most correct of the following statements relating to primal-dual linear programming problems:
 - Shadow prices of resources in optimal solution of the primal are optimal values of the dual variables.
 - 2. The optimal values of the objective functions of primal and dual are the same.
 - 3. If the primal problem has unbounded solution, the dual problem would have infeasibility.
 - 4. All of the above.

- In linear programming context, the sensitivity analysis is a technique to
 - allocate resources optimally.
 - 2. minimise cost of operations.
 - 3. spell out relation between primal and dual.
 - determine how optimal solution to LPP changes in response to problem inputs.

- Which of these does not hold for the 100% Rule?
 - 1. It can be applied when simultaneous changes in the objective function and the right-hand sides of the constraints are to be jointly considered.
 - 2. For all objective function co-efficients changed, if the sum of percentages of allowable increases and decreases does not exceed 100 per cent, then the optimal solution will not change.
 - 3. For all RHS values changed, if the sum of percentages of allowable increases and decreases does not exceed 100 per cent, then the shadow prices will not change.
 - 4. It is applied for considering simultaneous changes in the objective function co-efficients or simultaneous changes in the RHS values.