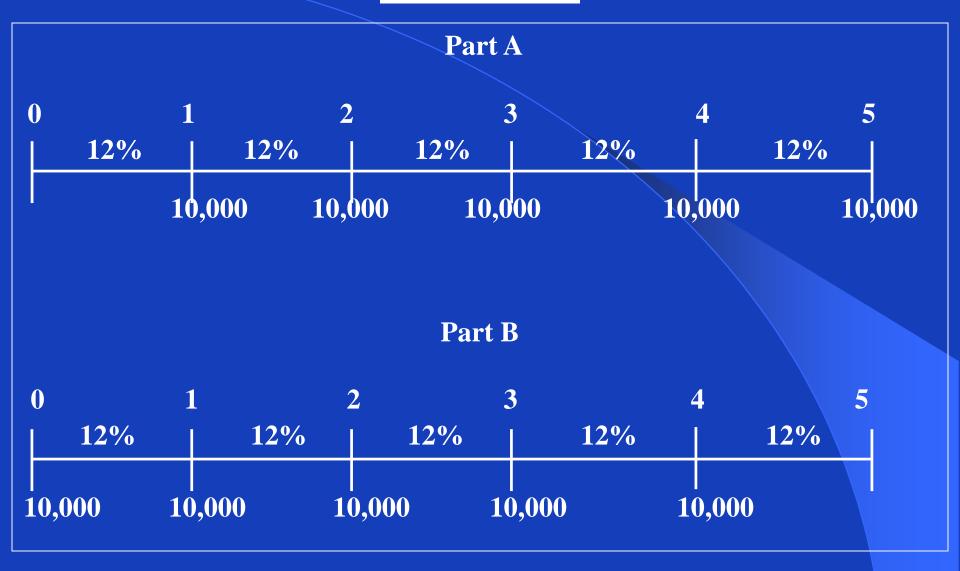
THE TIME VALUE OF MONEY

WHY TIME VALUE


A rupee today is more valuable than a rupee a year hence.

Why?

- Preference for current consumption over future consumption
- Productivity of capital
- Inflation

Many financial problems involve cash flows occurring at different points of time. For evaluating such cash flows, an explicit consideration of time value of money is required

TIME LINE

NOTATION

PV : Present value

 FV_n : Future value n years hence

 C_t : Cash flow occurring at the end of year t

A : A stream of constant periodic cash flow over a given time

r : Interest rate or discount rate

g: Expected growth rate in cash flows

n : Number of periods over which the cash flows

occur.

FUTURE VALUE OF A SINGLE AMOUNT

		Rs
First year:	Principal at the beginning	1,000
	Interest for the year	
	(Rs.1,000 x 0.10)	100
	Principal at the end	1,100
Second year:	Principal at the beginning	1,100
	Interest for the year	
	$(Rs.1,100 \times 0.10)$	110
	Principal at the end	1,210
Third year:	Principal at the beginning	1,210
	Interest for the year	
	(Rs.1,210 x 0.10)	121

Principal at the end

FORMULA

1,331

FUTURE VALUE = PRESENT VALUE $(1+r)^n$

VALUE OF FVIF_{r,n} FOR VARIOUS COMBINATIONS OF r AND n

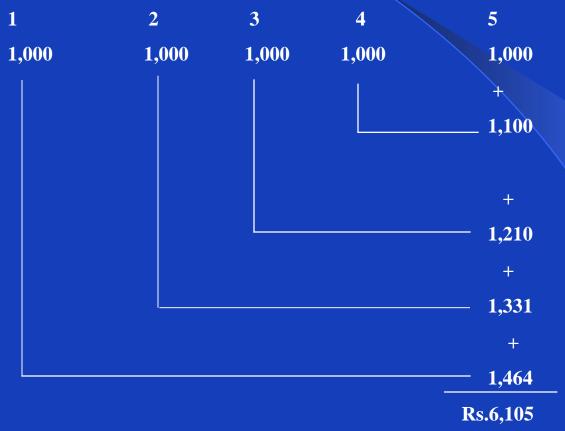
n/r	6 %	8 %	10 %	12 %	14 %
2	1.124	1.166	1.210	1.254	1.300
4	1.262	1.361	1.464	1.574	1.689
6	1.419	1.587	1.772	1.974	2.195
8	1.594	1.851	2.144	2.476	2.853
10	1.791	2.518	2.594	3.106	3.707

PRESENT VALUE OF A SINGLE AMOUNT

$$PV = FV_n [1/(1+r)^n]$$

n/r	6%	8%	10%	12%	14%
2	0.890	0.857	0.826	0.797	0.770
4	0.792	0.735	0.683	0.636	0.592
6	0.705	0.630	0.565	0.507	0.456
8	0.626	0.540	0.467	0.404	0.351
10	0.558	0.463	0.386	0.322	0.270
12	0.497	0.397	0.319	0.257	0.208

PRESENT VALUE OF AN UNEVEN SERIES


$$PV_{n} = \frac{A_{1}}{(1+r)} + \frac{A_{2}}{(1+r)^{2}} + \dots + \frac{A_{n}}{(1+r)^{n}}$$

$$= \frac{n}{\sum_{t=1}^{n} \frac{A_{t}}{(1+r)^{t}}}$$

Year	Cash Flow Rs.	PVIF _{12%,n}	Present Value of Individual Cash Flow
1	1,000	0.893	893
2	2,000	0.797	1,594
3	2,000	0.712	1,424
4	3,000	0.636	1,908
5	3,000	0.567	1,701
6	4,000	0.507	2,028
7	4,000	0.452	1,808
8	5,000	0.404	2,020
Present Va	lue of the Cash Flo	w Stream	13,376

FUTURE VALUE OF AN ANNUITY

 An annuity is a series of periodic cash flows (payments and receipts) of equal amounts

• Future value of an annuity = $A[(1+r)^n-1]$

WHAT LIES IN STORE FOR YOU

Suppose you have decided to deposit Rs.30,000 per year in your Public Provident Fund Account for 30 years. What will be the accumulated amount in your Public Provident Fund Account at the end of 30 years if the interest rate is 11 percent?

The accumulated sum will be:

$$= Rs.30,000 \qquad (1.11)^{30} - 1 \\ \hline 11$$

- = Rs.30,000 [199.02]
- = Rs.5,970,600

HOW MUCH SHOULD YOU SAVE ANNUALLY

You want to buy a house after 5 years when it is expected to cost Rs.2 million. How much should you save annually if your savings earn a compound return of 12 percent?

The future value interest factor for a 5 year annuity, given an interest rate of 12 percent, is:

FVIFA
$$_{n=5, r=12\%} = \frac{(1+0.12)^5 - 1}{0.12} = 6.353$$

The annual savings should be:

$$\frac{\text{Rs.2000,000}}{6.353} = \text{Rs.314,812}$$

ANNUAL DEPOSIT IN A SINKING FUND

Futura Limited has an obligation to redeem Rs.500 million bonds 6 years hence. How much should the company deposit annually in a sinking fund account wherein it earns 14 percent interest to cumulate Rs.500 million in 6 years time?

The future value interest factor for a 5 year annuity, given an interest rate of 14 percent is:

FVIFA_{$$n=6, r=14\%$$} = $(1+0.14)^6 - 1$ = 8.536

The annual sinking fund deposit should be:

HOW LONG SHOULD YOU WAIT

You want to take up a trip to the moon which costs Rs.1,000,000 the cost is expected to remain unchanged in nominal terms. You can save annually Rs.50,000 to fulfill your desire. How long will you have to wait if your savings earn an interest of 12 percent? The future value of an annuity of Rs.50,000 that earns 12 percent is equated to Rs.1,000,000.

$$50,000 \text{ x FVIFA}_{n=?,12\%} = 1,000,000$$
 $50,000 \text{ x} \left[\frac{1.12^n - 1}{0.12} \right] = 1,000,000$
 $1.12^n - 1 = \frac{1,000,000}{50,000} \text{ x } 0.12 = 2.4$
 $1.12^n = 2.4 + 1 = 3.4$
 $1.12^n = 10g 3.4$
 $1.12^n = 0.5315$
 $1.12^n = 0.5315$
 $1.12^n = 0.5315$
 $1.12^n = 0.5315$

You will have to wait for about 11 years.

PRESENT VALUE OF AN ANNUITY

Present value of an annuity = A
$$(1 - \frac{1}{(1+r)^n})$$

Value of PVIFA_{r,n} for Various Combinations of r and n

n/r	6 %	8 %	10 %	12 %	14 %
2	1.833	1.783	1.737	1.690	1.647
4	3.465	3.312	3.170	3.037	2.914
6	4.917	4.623	4.355	4.111	3.889
8	6.210	5.747	5.335	4.968	4.639
10	7.360	6.710	6.145	5.650	5.216
12	8.384	7.536	6.814	6.194	5.660

LOAN AMORTISATION SCHEDULE

Loan: 1,000,000 r = 15%, n = 5 years

$$1,000,000 = A \times PVA_{n=5}, r = 15\%$$

$$= A \times 3.3522$$

$$A = 298,312$$

Year	Beginning	Annual	Interest	Principal	Remaining
	Amount	Instalmen	nt e	Repayment	Balance
	(1)	(2)	(3)	(2)- $(3) = (4)$	(1)-(4) = (5)
1	1,000,000	298,312	150,000	148,312	851,688
2	851,688	298,312	127,753	170,559	681,129
3	681,129	298,312	102,169	196,143	484,986
4	484,986	298,312	727,482	225,564	259,422
5	259,422	298,312	38,913	259,399	23*

- a Interest is calculated by multiplying the beginning loan balance by the interest rate.
- b. Principal repayment is equal to annual instalment minus interest.
 - * Due to rounding off error a small balance is shown

PRESENT VALUE OF PERPETUITY

SHORTER COMPOUNDING PERIOD

Future value = Present value
$$1 + \left(\frac{r}{m}\right)^{mxn}$$

Where r = nominal annual interest rate

m = number of times compounding is done in a

year

n = number of years over which compounding is done

Example: Rs.5000, 12 percent, 4 times a year, 6 years

$$5000(1+0.12/4)^{4x6} = 5000 (1.03)^{24}$$
$$= Rs.10,164$$